AIRTENTION

Pilot training assistane of the future

Pilot Training Assistance

Success Story of pilot training

Standardization of processes as **key success factor** for increasing Safety in aviation in the last half century

- > Automation of activities
- > Enable correct decision-making under pressure
- Avoidance of errors

Shortcomings of Pilot Training

Optimal results require INDIVIDUALIZATION

- ➤ No objective measurements of trainee performances
- > **Subjective** evaluations and interpretations
- ➤ Limited availability of individual support
- No perception-, attention-based training support

Airtention Challenges

Focus on technical competencies

WHAT information?
WHEN is it relevant?
WHERE can it be obtained?

HOW EFFICIENT and **AUTOMATED** is the interaction / information intake?

SKILL & COMPETENCE APPROACH

Efficiency / Accuracy

AIRT NTION

Technical Setup

TECHNICAL SETUP

Sensor Systems :: Pupil Invisible

- "Just put it on and go:
 The world's first deep learning powered eye tracking glasses"
- Robust gaze estimation in any environment
- Robust to slippage on the wearing person
- Swappable lenses from -8 to +8 diopter

Technical Specifications

- 2 IR eye cameras with 200Hz @ 192x192px
- World camera with 30Hz @ 1088x1080px, 70°x70° FOV
- IMU with 200Hz included
- Microphone included
- Gaze data @ 55Hz

Pupil Invisible Eye Tracker

Pupil Invisible Eye Tracker

Obstrusiveness of student pilots in different phases of flight

TECHNICAL SETUP

Framework:: Environment Modeling

- modelling of cockpit environments for data visualization and analysis
- 1:1 virtual representation of the cockpit
- visualization styles: Mesh, Wireframe and Pointclouds

Attentive Cockpit Application's Mesh, Wireframe and Pointcloud View

Localization & Mapping

III: Absolute Localization (AL) + Relative Tracking (RT)

Localization results only used for visualization and not for instrument mapping or for interaction analysis

Requirements

 Stable, accurate and successful object recognition

Object recognition and instrument mapping for interaction analysis

Advantages

 Pose Tracking's accuracy requirements are lower

Disadvantages

- Drift compensation not possible
- Complex setup for visualization

AIRT NTION

Modeling Pilot Performance

Analysis :: Heatmap Visual Attention

3D heatmap of visual attention after taxi and SID

3D heatmap of visual attention in approach

Conscious Perception

Analysis of behavior patterns for estimation of consciousness of interaction

- fixations, saccades, dwell time duration, frequentation
- analysis of cognitive load
- Interpretation of gaze behavior in relation to saliency of contextual stimuli (covert (conscious behavior control) vs. overt behavior (extraneously trigger behavior control)
- Smooth pursuit

Cognitive Load from Pupil dilation

Established, reliable indicator for cognitive activity / load

- Pupil dilation shows correlations to para-sympathetical nervous system which is associated with cognitive load
- Spontaneous dilation independent from illumination
- Pupil Dilation changes associated with cognitive load: 0-1 mm
- Pupil Dilation changes associated with illumination: 0-6 mm

Problem:

Separation of cognitive effects from light-induced effects of pupil size

Gabay, Shai, Yoni Pertzov, and Avishai Henik. "Orienting of attention, pupil size, and the norepinephrine system." Attention, Perception, & Psychophysics 73.1 (2011): 123-129. S. H. Fairclough and K. Houston. A metabolic measure of mental effort. Biological Psychology, 66(2):177–190, 2004.

Jepma, Marieke, and Sander Nieuwenhuis. "Pupil diameter predicts changes in the exploration–exploitation trade-off: evidence for the adaptive gain theory." Journal of cognitive neuroscience 23.7 (2011): 1587-1596.

Hoeks, Bert, and Willem JM Levelt. "Pupillary dilation as a measure of attention: A quantitative system analysis." Behavior Research Methods, Instruments, & Computers 25.1 (1993): 16-26

Physiology of the eye, http://intranet.timu.edu.us/data/kafedra/internal/normal_phit/classes_stud/en/nurse/Bacchaour%20of%20sciences%20int/20urses/ADM/1-Physiology, of eye htm

Cognitive Load Analysis

Mapping to CBT Models

AIRTENTION

FlightAnalyzer Application

AIRT NTION

Validation

Validation :: Reference Data

- Enable comparison of individual session data to references
- Flight phase dependent data (SID, Cruise, Approach)
- Sources for reference data:
 - Expert flights
 Gaze data of experienced pilots are used
 - Averaged data of multiple sessions
 Data for flight phases of multiple sessions are aggregated

Data types:

- Heatmap
- Gaze distribution
- Gaze AOI transitions
- Advanced Metrics

Reference heatmap as averaged heatmap out of 15 ILS approaches

Validation :: Reference Data Comparison

Comparison to reference data as an approach to analyze source of performance shortages

Difference heatmap for approach: red shows "lacking areas", yellow shows "additional areas" and black "matching areas"

Gaze distribution for approach: orange shows actual distribution, blue shows reference gaze distribution

Transition difference matrix: values show the percentual difference between transitions from one AOI to another

AIRT NTION

Summary

USPs - current

- Combination of low-cost infrastructure / high quality interaction analysis (2k € vs. 25 80k€)
- Level of detail in visual interaction analysis
 - Continuous gaze tracking in 3D
 - High spatial resolution
- Cognitive load analysis
 - Qualitative / quantitative analysis
- Single system for live / debriefing assistance
- Without additional infrastructure
 - no alteration of certified simulators
 - Simple scalability

USPs - future

- Competence modeling for individuals and in comparison to colleagues
 - Visual features of cognition, perception, engagement, automation
- Adaptive training schedules
- Scalability towards real cockpits

Research Studio PCA

